Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

mTOR hyperactivity mediates lysosomal dysfunction in Gaucher's disease iPSC-neuronal cells.

Identifieur interne : 000174 ( Main/Exploration ); précédent : 000173; suivant : 000175

mTOR hyperactivity mediates lysosomal dysfunction in Gaucher's disease iPSC-neuronal cells.

Auteurs : Robert A. Brown [États-Unis] ; Antanina Voit [États-Unis] ; Manasa P. Srikanth [États-Unis] ; Julia A. Thayer [États-Unis] ; Tami J. Kingsbury [États-Unis] ; Marlene A. Jacobson [États-Unis] ; Marta M. Lipinski [États-Unis] ; Ricardo A. Feldman [États-Unis] ; Ola Awad [États-Unis]

Source :

RBID : pubmed:31519738

Descripteurs français

English descriptors

Abstract

Bi-allelic GBA1 mutations cause Gaucher's disease (GD), the most common lysosomal storage disorder. Neuronopathic manifestations in GD include neurodegeneration, which can be severe and rapidly progressive. GBA1 mutations are also the most frequent genetic risk factors for Parkinson's disease. Dysfunction of the autophagy-lysosomal pathway represents a key pathogenic event in GBA1-associated neurodegeneration. Using an induced pluripotent stem cell (iPSC) model of GD, we previously demonstrated that lysosomal alterations in GD neurons are linked to dysfunction of the transcription factor EB (TFEB). TFEB controls the coordinated expression of autophagy and lysosomal genes and is negatively regulated by the mammalian target of rapamycin complex 1 (mTORC1). To further investigate the mechanism of autophagy-lysosomal pathway dysfunction in neuronopathic GD, we examined mTORC1 kinase activity in GD iPSC neuronal progenitors and differentiated neurons. We found that mTORC1 is hyperactive in GD cells as evidenced by increased phosphorylation of its downstream protein substrates. We also found that pharmacological inhibition of glucosylceramide synthase enzyme reversed mTORC1 hyperactivation, suggesting that increased mTORC1 activity is mediated by the abnormal accumulation of glycosphingolipids in the mutant cells. Treatment with the mTOR inhibitor Torin1 upregulated lysosomal biogenesis and enhanced autophagic clearance in GD neurons, confirming that lysosomal dysfunction is mediated by mTOR hyperactivation. Further analysis demonstrated that increased TFEB phosphorylation by mTORC1 results in decreased TFEB stability in GD cells. Our study uncovers a new mechanism contributing to autophagy-lysosomal pathway dysfunction in GD, and identifies the mTOR complex as a potential therapeutic target for treatment of GBA1-associated neurodegeneration.

DOI: 10.1242/dmm.038596
PubMed: 31519738
PubMed Central: PMC6826018


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">mTOR hyperactivity mediates lysosomal dysfunction in Gaucher's disease iPSC-neuronal cells.</title>
<author>
<name sortKey="Brown, Robert A" sort="Brown, Robert A" uniqKey="Brown R" first="Robert A" last="Brown">Robert A. Brown</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201</wicri:regionArea>
<placeName>
<region type="state">Maryland</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Voit, Antanina" sort="Voit, Antanina" uniqKey="Voit A" first="Antanina" last="Voit">Antanina Voit</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201</wicri:regionArea>
<placeName>
<region type="state">Maryland</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Srikanth, Manasa P" sort="Srikanth, Manasa P" uniqKey="Srikanth M" first="Manasa P" last="Srikanth">Manasa P. Srikanth</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201</wicri:regionArea>
<placeName>
<region type="state">Maryland</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Thayer, Julia A" sort="Thayer, Julia A" uniqKey="Thayer J" first="Julia A" last="Thayer">Julia A. Thayer</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD 21201</wicri:regionArea>
<placeName>
<region type="state">Maryland</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Kingsbury, Tami J" sort="Kingsbury, Tami J" uniqKey="Kingsbury T" first="Tami J" last="Kingsbury">Tami J. Kingsbury</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201</wicri:regionArea>
<placeName>
<region type="state">Maryland</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>University of Maryland Center for Stem Cell Biology and Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>University of Maryland Center for Stem Cell Biology and Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD 21201</wicri:regionArea>
<placeName>
<region type="state">Maryland</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Jacobson, Marlene A" sort="Jacobson, Marlene A" uniqKey="Jacobson M" first="Marlene A" last="Jacobson">Marlene A. Jacobson</name>
<affiliation wicri:level="2">
<nlm:affiliation>Moulder Center for Drug Discovery Research, Temple University School of Pharmacy, Philadelphia, PA 19140, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Moulder Center for Drug Discovery Research, Temple University School of Pharmacy, Philadelphia, PA 19140</wicri:regionArea>
<placeName>
<region type="state">Pennsylvanie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Lipinski, Marta M" sort="Lipinski, Marta M" uniqKey="Lipinski M" first="Marta M" last="Lipinski">Marta M. Lipinski</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD 21201</wicri:regionArea>
<placeName>
<region type="state">Maryland</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201</wicri:regionArea>
<placeName>
<region type="state">Maryland</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Feldman, Ricardo A" sort="Feldman, Ricardo A" uniqKey="Feldman R" first="Ricardo A" last="Feldman">Ricardo A. Feldman</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201</wicri:regionArea>
<placeName>
<region type="state">Maryland</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Awad, Ola" sort="Awad, Ola" uniqKey="Awad O" first="Ola" last="Awad">Ola Awad</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA oawad@som.umaryland.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201</wicri:regionArea>
<placeName>
<region type="state">Maryland</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:31519738</idno>
<idno type="pmid">31519738</idno>
<idno type="doi">10.1242/dmm.038596</idno>
<idno type="pmc">PMC6826018</idno>
<idno type="wicri:Area/Main/Corpus">000199</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000199</idno>
<idno type="wicri:Area/Main/Curation">000199</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000199</idno>
<idno type="wicri:Area/Main/Exploration">000199</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">mTOR hyperactivity mediates lysosomal dysfunction in Gaucher's disease iPSC-neuronal cells.</title>
<author>
<name sortKey="Brown, Robert A" sort="Brown, Robert A" uniqKey="Brown R" first="Robert A" last="Brown">Robert A. Brown</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201</wicri:regionArea>
<placeName>
<region type="state">Maryland</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Voit, Antanina" sort="Voit, Antanina" uniqKey="Voit A" first="Antanina" last="Voit">Antanina Voit</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201</wicri:regionArea>
<placeName>
<region type="state">Maryland</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Srikanth, Manasa P" sort="Srikanth, Manasa P" uniqKey="Srikanth M" first="Manasa P" last="Srikanth">Manasa P. Srikanth</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201</wicri:regionArea>
<placeName>
<region type="state">Maryland</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Thayer, Julia A" sort="Thayer, Julia A" uniqKey="Thayer J" first="Julia A" last="Thayer">Julia A. Thayer</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD 21201</wicri:regionArea>
<placeName>
<region type="state">Maryland</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Kingsbury, Tami J" sort="Kingsbury, Tami J" uniqKey="Kingsbury T" first="Tami J" last="Kingsbury">Tami J. Kingsbury</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201</wicri:regionArea>
<placeName>
<region type="state">Maryland</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>University of Maryland Center for Stem Cell Biology and Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>University of Maryland Center for Stem Cell Biology and Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD 21201</wicri:regionArea>
<placeName>
<region type="state">Maryland</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Jacobson, Marlene A" sort="Jacobson, Marlene A" uniqKey="Jacobson M" first="Marlene A" last="Jacobson">Marlene A. Jacobson</name>
<affiliation wicri:level="2">
<nlm:affiliation>Moulder Center for Drug Discovery Research, Temple University School of Pharmacy, Philadelphia, PA 19140, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Moulder Center for Drug Discovery Research, Temple University School of Pharmacy, Philadelphia, PA 19140</wicri:regionArea>
<placeName>
<region type="state">Pennsylvanie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Lipinski, Marta M" sort="Lipinski, Marta M" uniqKey="Lipinski M" first="Marta M" last="Lipinski">Marta M. Lipinski</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD 21201</wicri:regionArea>
<placeName>
<region type="state">Maryland</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201</wicri:regionArea>
<placeName>
<region type="state">Maryland</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Feldman, Ricardo A" sort="Feldman, Ricardo A" uniqKey="Feldman R" first="Ricardo A" last="Feldman">Ricardo A. Feldman</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201</wicri:regionArea>
<placeName>
<region type="state">Maryland</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Awad, Ola" sort="Awad, Ola" uniqKey="Awad O" first="Ola" last="Awad">Ola Awad</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA oawad@som.umaryland.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201</wicri:regionArea>
<placeName>
<region type="state">Maryland</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Disease models & mechanisms</title>
<idno type="eISSN">1754-8411</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Autophagy (drug effects)</term>
<term>Basic Helix-Loop-Helix Leucine Zipper Transcription Factors (metabolism)</term>
<term>Biomarkers (metabolism)</term>
<term>Cell Line (MeSH)</term>
<term>Cell Nucleus (drug effects)</term>
<term>Cell Nucleus (metabolism)</term>
<term>Gaucher Disease (pathology)</term>
<term>Green Fluorescent Proteins (metabolism)</term>
<term>Humans (MeSH)</term>
<term>Induced Pluripotent Stem Cells (drug effects)</term>
<term>Induced Pluripotent Stem Cells (metabolism)</term>
<term>Induced Pluripotent Stem Cells (pathology)</term>
<term>Lipids (chemistry)</term>
<term>Lysosomes (drug effects)</term>
<term>Lysosomes (metabolism)</term>
<term>Lysosomes (pathology)</term>
<term>Mechanistic Target of Rapamycin Complex 1 (metabolism)</term>
<term>Naphthyridines (pharmacology)</term>
<term>Neural Stem Cells (drug effects)</term>
<term>Neural Stem Cells (metabolism)</term>
<term>Neurons (metabolism)</term>
<term>Protein Stability (drug effects)</term>
<term>Up-Regulation (drug effects)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Autophagie (effets des médicaments et des substances chimiques)</term>
<term>Cellules souches neurales (effets des médicaments et des substances chimiques)</term>
<term>Cellules souches neurales (métabolisme)</term>
<term>Cellules souches pluripotentes induites (anatomopathologie)</term>
<term>Cellules souches pluripotentes induites (effets des médicaments et des substances chimiques)</term>
<term>Cellules souches pluripotentes induites (métabolisme)</term>
<term>Complexe-1 cible mécanistique de la rapamycine (métabolisme)</term>
<term>Facteurs de transcription à motifs basiques hélice-boucle-hélice et à glissière à leucines (métabolisme)</term>
<term>Humains (MeSH)</term>
<term>Lignée cellulaire (MeSH)</term>
<term>Lipides (composition chimique)</term>
<term>Lysosomes (anatomopathologie)</term>
<term>Lysosomes (effets des médicaments et des substances chimiques)</term>
<term>Lysosomes (métabolisme)</term>
<term>Maladie de Gaucher (anatomopathologie)</term>
<term>Marqueurs biologiques (métabolisme)</term>
<term>Naphtyridines (pharmacologie)</term>
<term>Neurones (métabolisme)</term>
<term>Noyau de la cellule (effets des médicaments et des substances chimiques)</term>
<term>Noyau de la cellule (métabolisme)</term>
<term>Protéines à fluorescence verte (métabolisme)</term>
<term>Régulation positive (effets des médicaments et des substances chimiques)</term>
<term>Stabilité protéique (effets des médicaments et des substances chimiques)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Lipids</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Basic Helix-Loop-Helix Leucine Zipper Transcription Factors</term>
<term>Biomarkers</term>
<term>Green Fluorescent Proteins</term>
<term>Mechanistic Target of Rapamycin Complex 1</term>
</keywords>
<keywords scheme="MESH" qualifier="anatomopathologie" xml:lang="fr">
<term>Cellules souches pluripotentes induites</term>
<term>Lysosomes</term>
<term>Maladie de Gaucher</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Lipides</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Autophagy</term>
<term>Cell Nucleus</term>
<term>Induced Pluripotent Stem Cells</term>
<term>Lysosomes</term>
<term>Neural Stem Cells</term>
<term>Protein Stability</term>
<term>Up-Regulation</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Autophagie</term>
<term>Cellules souches neurales</term>
<term>Cellules souches pluripotentes induites</term>
<term>Lysosomes</term>
<term>Noyau de la cellule</term>
<term>Régulation positive</term>
<term>Stabilité protéique</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Cell Nucleus</term>
<term>Induced Pluripotent Stem Cells</term>
<term>Lysosomes</term>
<term>Neural Stem Cells</term>
<term>Neurons</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Cellules souches neurales</term>
<term>Cellules souches pluripotentes induites</term>
<term>Complexe-1 cible mécanistique de la rapamycine</term>
<term>Facteurs de transcription à motifs basiques hélice-boucle-hélice et à glissière à leucines</term>
<term>Lysosomes</term>
<term>Marqueurs biologiques</term>
<term>Neurones</term>
<term>Noyau de la cellule</term>
<term>Protéines à fluorescence verte</term>
</keywords>
<keywords scheme="MESH" qualifier="pathology" xml:lang="en">
<term>Gaucher Disease</term>
<term>Induced Pluripotent Stem Cells</term>
<term>Lysosomes</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Naphtyridines</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Naphthyridines</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Cell Line</term>
<term>Humans</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Humains</term>
<term>Lignée cellulaire</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Bi-allelic
<i>GBA1</i>
mutations cause Gaucher's disease (GD), the most common lysosomal storage disorder. Neuronopathic manifestations in GD include neurodegeneration, which can be severe and rapidly progressive.
<i>GBA1</i>
mutations are also the most frequent genetic risk factors for Parkinson's disease. Dysfunction of the autophagy-lysosomal pathway represents a key pathogenic event in
<i>GBA1</i>
-associated neurodegeneration. Using an induced pluripotent stem cell (iPSC) model of GD, we previously demonstrated that lysosomal alterations in GD neurons are linked to dysfunction of the transcription factor EB (TFEB). TFEB controls the coordinated expression of autophagy and lysosomal genes and is negatively regulated by the mammalian target of rapamycin complex 1 (mTORC1). To further investigate the mechanism of autophagy-lysosomal pathway dysfunction in neuronopathic GD, we examined mTORC1 kinase activity in GD iPSC neuronal progenitors and differentiated neurons. We found that mTORC1 is hyperactive in GD cells as evidenced by increased phosphorylation of its downstream protein substrates. We also found that pharmacological inhibition of glucosylceramide synthase enzyme reversed mTORC1 hyperactivation, suggesting that increased mTORC1 activity is mediated by the abnormal accumulation of glycosphingolipids in the mutant cells. Treatment with the mTOR inhibitor Torin1 upregulated lysosomal biogenesis and enhanced autophagic clearance in GD neurons, confirming that lysosomal dysfunction is mediated by mTOR hyperactivation. Further analysis demonstrated that increased TFEB phosphorylation by mTORC1 results in decreased TFEB stability in GD cells. Our study uncovers a new mechanism contributing to autophagy-lysosomal pathway dysfunction in GD, and identifies the mTOR complex as a potential therapeutic target for treatment of
<i>GBA1</i>
-associated neurodegeneration.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">31519738</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>05</Month>
<Day>26</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>05</Month>
<Day>26</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1754-8411</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>12</Volume>
<Issue>10</Issue>
<PubDate>
<Year>2019</Year>
<Month>10</Month>
<Day>16</Day>
</PubDate>
</JournalIssue>
<Title>Disease models & mechanisms</Title>
<ISOAbbreviation>Dis Model Mech</ISOAbbreviation>
</Journal>
<ArticleTitle>mTOR hyperactivity mediates lysosomal dysfunction in Gaucher's disease iPSC-neuronal cells.</ArticleTitle>
<ELocationID EIdType="pii" ValidYN="Y">dmm038596</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.1242/dmm.038596</ELocationID>
<Abstract>
<AbstractText>Bi-allelic
<i>GBA1</i>
mutations cause Gaucher's disease (GD), the most common lysosomal storage disorder. Neuronopathic manifestations in GD include neurodegeneration, which can be severe and rapidly progressive.
<i>GBA1</i>
mutations are also the most frequent genetic risk factors for Parkinson's disease. Dysfunction of the autophagy-lysosomal pathway represents a key pathogenic event in
<i>GBA1</i>
-associated neurodegeneration. Using an induced pluripotent stem cell (iPSC) model of GD, we previously demonstrated that lysosomal alterations in GD neurons are linked to dysfunction of the transcription factor EB (TFEB). TFEB controls the coordinated expression of autophagy and lysosomal genes and is negatively regulated by the mammalian target of rapamycin complex 1 (mTORC1). To further investigate the mechanism of autophagy-lysosomal pathway dysfunction in neuronopathic GD, we examined mTORC1 kinase activity in GD iPSC neuronal progenitors and differentiated neurons. We found that mTORC1 is hyperactive in GD cells as evidenced by increased phosphorylation of its downstream protein substrates. We also found that pharmacological inhibition of glucosylceramide synthase enzyme reversed mTORC1 hyperactivation, suggesting that increased mTORC1 activity is mediated by the abnormal accumulation of glycosphingolipids in the mutant cells. Treatment with the mTOR inhibitor Torin1 upregulated lysosomal biogenesis and enhanced autophagic clearance in GD neurons, confirming that lysosomal dysfunction is mediated by mTOR hyperactivation. Further analysis demonstrated that increased TFEB phosphorylation by mTORC1 results in decreased TFEB stability in GD cells. Our study uncovers a new mechanism contributing to autophagy-lysosomal pathway dysfunction in GD, and identifies the mTOR complex as a potential therapeutic target for treatment of
<i>GBA1</i>
-associated neurodegeneration.</AbstractText>
<CopyrightInformation>© 2019. Published by The Company of Biologists Ltd.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Brown</LastName>
<ForeName>Robert A</ForeName>
<Initials>RA</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Voit</LastName>
<ForeName>Antanina</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Srikanth</LastName>
<ForeName>Manasa P</ForeName>
<Initials>MP</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Thayer</LastName>
<ForeName>Julia A</ForeName>
<Initials>JA</Initials>
<AffiliationInfo>
<Affiliation>Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kingsbury</LastName>
<ForeName>Tami J</ForeName>
<Initials>TJ</Initials>
<AffiliationInfo>
<Affiliation>Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>University of Maryland Center for Stem Cell Biology and Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Jacobson</LastName>
<ForeName>Marlene A</ForeName>
<Initials>MA</Initials>
<AffiliationInfo>
<Affiliation>Moulder Center for Drug Discovery Research, Temple University School of Pharmacy, Philadelphia, PA 19140, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lipinski</LastName>
<ForeName>Marta M</ForeName>
<Initials>MM</Initials>
<AffiliationInfo>
<Affiliation>Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Feldman</LastName>
<ForeName>Ricardo A</ForeName>
<Initials>RA</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Awad</LastName>
<ForeName>Ola</ForeName>
<Initials>O</Initials>
<Identifier Source="ORCID">0000-0002-9290-8942</Identifier>
<AffiliationInfo>
<Affiliation>Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA oawad@som.umaryland.edu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>10</Month>
<Day>16</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Dis Model Mech</MedlineTA>
<NlmUniqueID>101483332</NlmUniqueID>
<ISSNLinking>1754-8403</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C553294">1-(4-(4-propionylpiperazin-1-yl)-3-(trifluoromethyl)phenyl)-9-(quinolin-3-yl)benzo(h)(1,6)naphthyridin-2(1H)-one</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D051778">Basic Helix-Loop-Helix Leucine Zipper Transcription Factors</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D015415">Biomarkers</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D008055">Lipids</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D009287">Naphthyridines</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C064972">TFEB protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>147336-22-9</RegistryNumber>
<NameOfSubstance UI="D049452">Green Fluorescent Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.1</RegistryNumber>
<NameOfSubstance UI="D000076222">Mechanistic Target of Rapamycin Complex 1</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001343" MajorTopicYN="N">Autophagy</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051778" MajorTopicYN="N">Basic Helix-Loop-Helix Leucine Zipper Transcription Factors</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015415" MajorTopicYN="N">Biomarkers</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002460" MajorTopicYN="N">Cell Line</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002467" MajorTopicYN="N">Cell Nucleus</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005776" MajorTopicYN="N">Gaucher Disease</DescriptorName>
<QualifierName UI="Q000473" MajorTopicYN="Y">pathology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D049452" MajorTopicYN="N">Green Fluorescent Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D057026" MajorTopicYN="N">Induced Pluripotent Stem Cells</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000473" MajorTopicYN="Y">pathology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008055" MajorTopicYN="N">Lipids</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008247" MajorTopicYN="N">Lysosomes</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000473" MajorTopicYN="Y">pathology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000076222" MajorTopicYN="N">Mechanistic Target of Rapamycin Complex 1</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009287" MajorTopicYN="N">Naphthyridines</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058953" MajorTopicYN="N">Neural Stem Cells</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009474" MajorTopicYN="N">Neurons</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055550" MajorTopicYN="N">Protein Stability</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015854" MajorTopicYN="N">Up-Regulation</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">GBA1 mutations</Keyword>
<Keyword MajorTopicYN="Y">Lysosomal storage disorder</Keyword>
<Keyword MajorTopicYN="Y">TFEB</Keyword>
<Keyword MajorTopicYN="Y">iPSC</Keyword>
<Keyword MajorTopicYN="Y">mTORC1</Keyword>
</KeywordList>
<CoiStatement>Competing interestsThe authors declare no competing or financial interests.</CoiStatement>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>12</Month>
<Day>18</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>09</Month>
<Day>06</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>9</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>5</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>9</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31519738</ArticleId>
<ArticleId IdType="pii">dmm.038596</ArticleId>
<ArticleId IdType="doi">10.1242/dmm.038596</ArticleId>
<ArticleId IdType="pmc">PMC6826018</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Essays Biochem. 2017 Dec 12;61(6):565-584</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29233869</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurochem. 2014 Jun;129(5):884-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24494600</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Pharmacol. 2015;7(2):15-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27134695</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2009 Jul 24;325(5939):473-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19556463</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Mol Genet. 2014 Feb 15;23(4):843-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24064337</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Res. 2013 Apr;23(4):508-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23337583</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Br J Haematol. 2005 Apr;129(2):178-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15813845</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Mol Genet. 2015 Oct 15;24(20):5775-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26220978</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Expert Opin Investig Drugs. 2001 Mar;10(3):455-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11227045</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neuropathol Exp Neurol. 2012 May;71(5):434-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22487861</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuroscientist. 2012 Jun;18(3):224-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21525331</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2010 Oct 22;40(2):310-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20965424</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO Rep. 2013 Mar 1;14(3):242-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23399656</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Presse Med. 1996 Jan 27;25(3):108-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8746084</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Med. 2010 Jul;16(7):788-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20562878</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2016 Jul 1;129(13):2475-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27252382</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO Mol Med. 2017 Mar;9(3):353-370</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28130275</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neurobiol Dis. 2003 Dec;14(3):595-601</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14678774</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Autophagy. 2010 Jul;6(5):648-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20458183</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Mol Genet. 2015 Dec 15;24(24):7031-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26420838</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2015 Mar 19;10(3):e0120819</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25790376</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Diseases. 2017 Mar 02;5(1):null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28933363</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2016 Apr;1861(4):269-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26778751</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2012 Mar 7;31(5):1095-108</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22343943</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011;6(6):e21758</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21738789</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Neurol. 2012 Apr 27;3:65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22557990</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Genet Metab. 2015 Feb;114(2):110-122</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25435509</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2017 Mar 7;114(10):2699-2704</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28223512</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Autophagy. 2012 Apr;8(4):445-544</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22966490</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Lipid Res. 2010 Jul;51(7):1643-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20211931</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2014 Jun 06;5:4028</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24905578</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neural Regen Res. 2013 Aug 25;8(24):2275-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25206537</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2017 Sep 1;36(17):2544-2552</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28754656</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biologics. 2010 Dec 06;4:299-313</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21209725</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Cycle. 2009 Dec 15;8(24):4021-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19949301</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Autophagy. 2012 Jun;8(6):903-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22576015</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Autophagy. 2009 Jul;5(5):725-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19395872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Mol Genet. 2016 Aug 15;25(16):3432-3445</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27378698</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2017 Mar 9;168(6):960-976</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28283069</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Inherit Metab Dis. 2014 Jul;37(4):643-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24894157</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 2016 Nov 16;36(46):11654-11670</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27852774</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuron. 2014 Oct 22;84(2):275-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25374355</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Mol Sci. 2018 Mar 12;19(3):null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29534520</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2018 Jul 11;9(1):2685</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29992949</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Neurobiol. 2015 Feb;51(1):89-104</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24990317</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Stem Cells Transl Med. 2015 Aug;4(8):878-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26062980</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2016 Mar 1;35(5):479-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26813791</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Blood Cells Mol Dis. 2018 Feb;68:14-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28935503</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(8):e43310</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22912851</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Pediatr Res. 2000 Aug;48(2):233-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10926300</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 2009;452:165-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19200882</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Invest. 1966 Jul;45(7):1112-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5338605</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Inherit Metab Dis. 2006 Apr-Jun;29(2-3):449-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16763917</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2017 Apr 14;292(15):6303-6311</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28223357</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Autophagy. 2015;11(9):1443-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26207393</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 2016 Jul 20;36(29):7693-706</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27445146</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Autophagy. 2009 Jul;5(5):732-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19398892</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Cell Biol. 2015 Sep;25(9):545-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26159692</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cold Spring Harb Perspect Med. 2012 Jan;2(1):a008888</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22315721</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2009 Oct 15;122(Pt 20):3589-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19812304</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Stem Cell Reports. 2017 Dec 12;9(6):1853-1867</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29198828</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2017 Apr 6;169(2):361-371</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28388417</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2013 May 7;110(19):E1817-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23610405</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Lipid Res. 2016 Sep;57(9):1619-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27330054</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Aging Cell. 2017 Dec;16(6):1219-1233</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28971552</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cold Spring Harb Perspect Biol. 2014 May 05;6(6):null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24799353</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neural Regen Res. 2017 Mar;12(3):380-384</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28469644</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2011 Jun 17;332(6036):1429-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21617040</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuron. 2017 Mar 8;93(5):1015-1034</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28279350</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Hematol. 2017 Nov;92(11):1170-1176</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28762527</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2016 Mar 1;30(5):535-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26944679</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Invest. 2017 Oct 2;127(10):3717-3729</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28872463</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2018 Jun 1;37(11):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29764979</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Semin Cell Dev Biol. 2014 Dec;36:121-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25158238</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Neurosci. 2015 May;66(Pt A):37-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25802027</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2013 Apr 15;126(Pt 8):1713-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23641065</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Inherit Metab Dis. 2010 Aug;33(4):347-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20429032</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Handb Clin Neurol. 2013;113:1709-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23622393</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biomolecules. 2017 Jul 07;7(3):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28686218</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Mutat. 2012 Oct;33(10):1398-407</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22623374</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Oncol. 2017 Sep 28;4(6):e1372867</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29209655</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013;8(2):e55526</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23408996</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Cell Biol. 2014 Dec;24(12):743-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25061009</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2016 Jun 09;7:11803</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27278822</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Mol Genet. 2016 Dec 1;25(23):5126-5141</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27655403</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2009 Mar 20;284(12):8023-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19150980</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Genet Metab. 2004 Jul;82(3):192-207</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15234332</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2012 Oct 30;109(44):18054-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23071332</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Metab. 2013 Jun 4;17(6):941-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23707074</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Maryland</li>
<li>Pennsylvanie</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Maryland">
<name sortKey="Brown, Robert A" sort="Brown, Robert A" uniqKey="Brown R" first="Robert A" last="Brown">Robert A. Brown</name>
</region>
<name sortKey="Awad, Ola" sort="Awad, Ola" uniqKey="Awad O" first="Ola" last="Awad">Ola Awad</name>
<name sortKey="Feldman, Ricardo A" sort="Feldman, Ricardo A" uniqKey="Feldman R" first="Ricardo A" last="Feldman">Ricardo A. Feldman</name>
<name sortKey="Jacobson, Marlene A" sort="Jacobson, Marlene A" uniqKey="Jacobson M" first="Marlene A" last="Jacobson">Marlene A. Jacobson</name>
<name sortKey="Kingsbury, Tami J" sort="Kingsbury, Tami J" uniqKey="Kingsbury T" first="Tami J" last="Kingsbury">Tami J. Kingsbury</name>
<name sortKey="Kingsbury, Tami J" sort="Kingsbury, Tami J" uniqKey="Kingsbury T" first="Tami J" last="Kingsbury">Tami J. Kingsbury</name>
<name sortKey="Lipinski, Marta M" sort="Lipinski, Marta M" uniqKey="Lipinski M" first="Marta M" last="Lipinski">Marta M. Lipinski</name>
<name sortKey="Lipinski, Marta M" sort="Lipinski, Marta M" uniqKey="Lipinski M" first="Marta M" last="Lipinski">Marta M. Lipinski</name>
<name sortKey="Srikanth, Manasa P" sort="Srikanth, Manasa P" uniqKey="Srikanth M" first="Manasa P" last="Srikanth">Manasa P. Srikanth</name>
<name sortKey="Thayer, Julia A" sort="Thayer, Julia A" uniqKey="Thayer J" first="Julia A" last="Thayer">Julia A. Thayer</name>
<name sortKey="Voit, Antanina" sort="Voit, Antanina" uniqKey="Voit A" first="Antanina" last="Voit">Antanina Voit</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000174 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000174 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:31519738
   |texte=   mTOR hyperactivity mediates lysosomal dysfunction in Gaucher's disease iPSC-neuronal cells.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:31519738" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020